
An Effective Computation Offloading from Mobile
Devices to Cloud

Jaya Ashok Suradkar#1, Prof. R. D. Bharati*2
#Department of Computer Engineering,

Savitribai Phule Pune University,

DYPIET, Pimpri, Pune, India.

Abstract—Energy and time effectiveness is a primary
consideration for smartphones or mobile devices. Cloud
computing has the ability to conserve mobile device’s energy
by using the concept of computation offloading. Existing
studies focus on offloading computation by assuming the
relations among the factors like wireless bandwidth, the
amount of computation to be performed, and the amount of
data to be transmitted. Objective of Computation Offloading
Decision Maker Framework (CODMF) is to reduce energy
consumption and response time for a mobile device
simultaneously. Execution of computation intensive or
resource intensive task to be done locally on CPU and
remotely on cloud, which provide a highly versatile execution
platform for mobile or android applications. We conduct a
real world application for finding road roughness, in order to
measure the performance of CODMF. When the task
demands maximum energy consumption and time, task will
be shifted to the cloud. In addition, we proposed application
partitioning for a CODMF which gives a smaller amount of
decision rate for false offloading than previous methods. By
offloading modules of an application, proposed system can
achieve significant savings in battery consumption and in
execution time.

Keywords—computation offloading; cloud computing;
Energy; Battery; response time; framework.

I. INTRODUCTION

In our daily life, mobile devices have become common
entity. Energy or Battery is the only resource in mobile
devices that cannot be restored immediately and needs
external resources to be renewed. Computation offloading
is a way to improve performance and save energy. Cloud
computing provide services based on pay-as-you-use
principle like water, electricity, telephone etc. and provides
a model for "enabling ubiquitous, convenient, on demand
network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released
with minimal management effort or service provider
interaction", as NIST describes. Mobile cloud computing
is a combination of cloud computing, wireless
communication technologies, mobile web, location based
services and computing devices. There are many mobile
cloud applications such as android applications, biometric
application, social media applications, mobile commerce
application, mobile healthcare applications etc. are using
software as a service model.

Several research efforts devoted towards computation
offloading but most of the works have not considered the
impact of computation offloading on response time, which
leads in degradation of performance. Also, investigation
needs to be done on energy consumption of retrieving and
uploading data which may results in a high battery usage
and can significantly reduce battery lifetime. Decision
accuracy depends on various factors like memory
bandwidth, bandwidth required for network transmission
and CPU speed of a mobile device are to be considered in
computation offloading for building a cost functions.
Adaptability, Portability, Accuracy and Offload targets are
important factors in computation offloading. Proposed
CODMF framework with partitioning algorithm can
achieve better performance in terms of execution time and
battery usage.

In this paper we study about related work done on
energy and time saving in section II. Implementation
details for computation offloading framework in section III
gives overview of a CODMF framework, proposed system,
mathematical model, algorithm and experimental setup. In
section IV we discuss expected results and finally conclude
a paper in section V.

II. RELATED WORK

Optimizing energy and response time for mobile
devices simultaneously are difficult design goals and very
few research efforts have adopted on energy and time
saving simultaneously. The authors in [1] presented a
simple model to evaluate energy cost of wireless data
transmission. They formulated data offloading through
several wireless network interfaces as a “statistical
decision problem” and presented several solutions to
evaluate wireless network states and solved its issues.
Authors in [2] showed that the network characteristics
calculated through network profiling. They also denoted
partitioning granularity in terms of a service, segment and
module. SALSA [3] is a near-optimal algorithm for
performing the energy-delay tradeoff in bandwidth
intensive delay-tolerant smartphone applications.
CloneCloud [4] uses a combine static analysis and dynamic
profiling for automatic application partitioning. Their
System solves design and implementation issues to meet
basic augmented execution of mobile applications on the
cloud, representing the whole transfer of control from the
device to the clone and back. Also, combine partitioning,
migration with merging, and on-demand instantiation of

Jaya Ashok Suradkar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1922-1927

www.ijcsit.com 1922

partitioning for the same purpose. ThinkAir [5], is nothing
but a computation offloading framework for offloading
computation from mobile side to the cloud side. It adapts
to varying bandwidth and connectivity changes during
runtime. Application’s source code needs simple
modifications by using ThinkAir framework. Some authors
presented eTime [6], to manage data for delay-tolerant
applications which achieves energy efficient data migration
or transmission by using cloud resources in mobile cloud
computing. In [7], experimental driven approach to
computation offloading tradeoffs is given. They presented
that instead of offloading tasks to a cloud side, running
particular tasks at local side is better choice. So authors
proposed a new generic architecture for any mobile cloud
computing application to automate the offloading decision
and help these applications to optimize energy and time for
the mobile device. Static Partitioning and adaption to
varying bandwidth implemented by [8] and object-level is
the choice of the fine grained offloading and its
granularity. The first task scheduling work [9] focused on
reducing energy consumption under a difficult completion
time constraint for the graph of the task in the MCC
environment. A novel algorithm proposed by authors to
achieve energy savings by shifting tasks in between the
local cores and the cloud while maintaining delay
scheduling. A linear time rescheduling algorithm for the
task migration used to minimize overall computation
complexity effectively. In [10], ternary decision maker
framework called TDM for computation offloading is
designed and implemented. Survey of different
computation offloading framework is given in [12]. The
above work summarized as:

TABLE I. WORKS ON ENERGY AND TIME SAVINGS

Year
Related Work on both Energy and Time Savings

Contribution Decision Partition

2007
Context-sensitive energy-efficient
offloading[1]

Static No

2010
Dynamic partition between devices and
clouds[2]

Dynamic Yes

2010
Stable and adaptive link selection
algoithm[3]

Dynamic No

2011
Elastic execution between devices and
clouds[4]

Static Yes

2012
Dynamic resource allocation and
parallel execution[5]

Dynamic No

2013
Energy efficient data transmission
strategy[6]

Dynamic No

2013
Feasibility of mobile cloud systems in a
real setting[7]

Dynamic No

2014
Partition scheme taking the bandwidth
as a variable[8]

Dynamic Yes

2014
Energy and performance aware task
scheduling[9]

Dynamic Yes

2015 Offloading framework TDM[10] Dynamic No

2016
Proposed Work (Partitioning Algorithm
[11] in TDM Framework [10])

Dynamic Yes

 Existing frameworks for cost models of computation
offloading are shown in Table II.

TABLE II. EXISTING OFFLOADING FRAMEWORKS ON COST MODEL

Sr.
No

Related Work

Contribution Observation Limitation

1

Computation
Offloading in
Handheld
Devices to
Coprocessors
and Clouds[10]

High Accuracy,
Shorter Response
Time, Less Energy
Consumption

Does not focuses on
experimental analysis
of different Mobile
devices, apps and
network interfaces

2 CloneCloud[4]

History-based
Profiling,
Implementation on
Dalvik
VM(Android)

Does not provide
generalized calculations
for real networks and
device conditions, All
offloading scenarios
need to considered,
Pre-calculated
Partitioning

3 MAUI [13]

History-based
Profiling,
Implementation on
Microsoft .NET
Framework

Platform Dependent,
Less Scalable, Less
Adoptability

III. IMPLEMENTATION DETAILS

A. Computation Offloading Framework (TDM)

TDM is nothing but a daemon, similar to a process that
execute in a backend. It has two modules: factor
measurement and ternary decision making. Before startup
of a system, static decision factors are measured. These
factors are determined at static time so these are
independent of a module and deterministic. As shown in
Fig. 1, at a dynamic time, when a module is invoked, TDM
first looks for the presence of the corresponding factor
table of the application’s module, which collects required
parameters or device information to evaluate energy
savings and execution time. If the factor table is not
present, the module of mobile application executed locally
on CPU, and a creation of corresponding factor table
process completed.

Fig. 1. Flow of a TDM [10].

Jaya Ashok Suradkar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1922-1927

www.ijcsit.com 1923

Fig. 2. System Architecture.

TDM insert static decision factors and module-
dependent decision factors to the factor table, which are
provided by the module to the factor table. After
completion of a module, factor table records execution
time for future use. But, if the corresponding table of
factors is present, TDM obtains the decision factors from
the decision table. TDM then request cloud to give speed
of execution and calculates network transmission
bandwidth. By passing all the decision factors to the cost
functions, the decision maker takes the offloading decision.
Offloading decision is of two types: one to execute locally
and second to execute on cloud. Here, a module is a mobile
application’s function for finding road roughness.
Workloads for frequently used functions are deterministic
in nature. For a cloud execution, module will be offloaded
[10].

Computation Offloading Decision Making Framework
(CODMF), which intends to reduce execution time as well
as conserve energy simultaneously. While running for the
first time application create factor table for calculating the
energy consumption and time consumption. Each device
possesses a factor table. A table of factors collects required
device information to evaluate battery usage and execution
time of the corresponding application for finding
roughness of a road. Execution of computation intensive or
resource intensive task will be done at mobile side and at a
cloud side, which results in a highly flexible framework for
execution of android applications.

Optimizing energy consumption and response time are
two divergent goals. Firstly, design a cost function which
is customizable and helps end users to adjust the weight of
energy consumption and response time. By developing a
lightweight profiling method, evaluate enhancement in a
performance and energy usage obtain from offloading. To
make right decisions, important factors like network
transmission bandwidth, Speed of mobile CPU, and
memory bandwidth etc., plays a key role and need to
consider when building cost function. To make offloading
decision based on the user specified and customizable cost
function, energy usage and response time evaluated.
Computation Offloading Decision Maker Framework
(CODMF), which is used to minimize energy usage and
response time the same time. The CODMF can be
explained with the following modules:

1) Creation of factor table: When runing an
application for the first time create factor table for
calculating the energy consumption and time consumption.
Each device has its own factor table. A table of factors
table collects required device information to evaluate
execution time and energy usage of the corresponding
application for finding road roughness. For the
Measurement of decision factors like wireless bandwidth,
component speed and execution time; Calculate the local
CPU speed and at runtime sent request to the cloud to
obtain cloud speed. Also, measure memory bandwidth at
runtime by measuring the access time for a large amount of
data saved in the memory.

2) Calculate Energy Consumption and Execution
time(Ddecision making): Calculate energy consumption at
mobile side and at cloud side. Also, execution time at
moble side and at cloud side.

3) Task offloading: If the energy consumed on location
is maximum the and also determine the time required for
execution is large then task will be offloaded to the cloud.

4) Apply on Application (Finding Road Roughness):
The energy consumption and time execution is applied on
android application for finding road roughness.

In addition, MCOP (min-cost offloading paritioning)
algorithm [11] to be implemented in a TDM framework to
have more accuracy in energy and time saving estimation.

B. Offloading Partitioning Algorithm

The MCOP algorithm [11] aims at finding the optimal
partitioning cost that minimizes response time, energy
consumption or the weighted sum of energy and time. The
MCOP algorithm includes two steps as follows:

1) Unoffloadable Vertices Merging: An unoffloadable
module in our application (for example, sensor data
collection for finding road roughness) is the one which is
unable to be migrated outside of the mobile device and
thus is located only in the unoffloadable partition. Apart
from this, choose any module to be executed at mobile side
(local execution). Then all modules that are not going to be
migrated to the cloud are grouped or merged into one that
is selected as the source vertex. ‘Merging’ means
application’s opeartions are coalesced into one, whose
‘communication cost to the offloaded computation’ is the
sum of ‘communication cost to the offloaded computation’
of all merged application’s operations. Let G represent the
original graph after all the unoffloadable modules are
merged.

2) Coarse Partitioning: This step of coarse
partitioning is to coarsen G to the coarsest graph G|V|. To
merge two application’s operations or calculations and
reduce their count by one is refer to as “coarsen”.
Therefore, the algorithm has |V| ̶ 1 phases. In each phase i
(for 1 ≤ i ≤ |V| ̶ 1), the cut value i.e., the partitioning cost
in a graph Gi = (Vi , Ei) can be calculated. Gi+1 arises from
Gi by merging “suitable modules”, where G1 = G. In an
idividual phase i, the partitioning results are the minimum
partitioning cost among all the costs and the corresponding
group lists for mobile side (local execution) and cloud side

Jaya Ashok Suradkar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1922-1927

www.ijcsit.com 1924

execution. In each phase i of the coarse partitioning, there
are five steps:

a) Start with A={a}, where a is usually an
unffloadable application’s operation in Gi.

b) Iteratively add the module to A that is the most
tightly connected to A.

c) Let s, t be the last two modules (in order) added
to A.

d) The graph cut or cost of the phase i is (Vi \ {t},
{t}).

e) Gi+1 arises from Gi by merging modules s and t.

C. Mathematical Model

Application first invoke a module with the size of Ninput

to process data saved in memory. Process this data locally
or remotely. Processed data is of size Noutput are stored in a
memory again. CODMF involves two parts:

1) Factor Table Creation
While running an application for the first time, create

factor table to calculate energy consumption and time
consumption. Each device possess its respective table of a
factors. A table of a factors collects device information
which contains required specifications to evaluate energy
usage and execution time of the associated application.
Table of factors involves measurement of decision factors:

a) Wireless Bandwidth (B) = (data sent in KB)/ (time
in seconds) = KB/s

b) Component Speed: μcpu, μcld, μmem
Calculate the speed of local CPU μcpu and at run time

sent query to the cloud to obtain speed of a cloud μcld.
Also, measure memory bandwidth μmem at run time. Time
required to access a huge amount of data termed as
memory bandwidth and estimated as,

μmem = (amount of data access in MB)/(time in sec(20s))
MB/s

c) Execution time: tcomp, ttrans
 tcomp = Tcpu ̶ ttrans

Where Tcpu is the overall execution time and ttrans is a
transmission time.

2) Decision Making
Ternary decision making involves:

a) Energy Consumption and Execution Time

i) Execution time for application to execute on
local CPU can be calculated as,

Tcpu = ttrans + tcomp (1)

Where ttrans is a transmission time. tcomp is a time consumed
by CPU for a code execution termed as “computation
time”.

ttrans = (Ninput + Noutput)/μmem (2)

ii) Based on equation (1) Energy consumption for
local CPU execution can be estimated as,

 Ecpu = (Pbasic + Pcpu) * Tcpu

To calculate Tcld, determine data transfer rate as,

σ = ((Ninput + Noutput)/MTU) * (size of DATA packet)

Where MTU is “maximum transmission unit”.

ACK packets handled in the time of transmission are
calculated by,

σack = ((Ninput + Noutput)/MTU) * (size of ACK packet)

iii) Execution time for cloud execution can be
calculated as,

Tcld = ((σ + σack)/μmem) + ((σ + σack)/B) + ((tcomp*μcpu)/μcld)
(3)

iv) Energy consumption for Cloud execution is
estimated by,

Ecld = Pbasic * Tcld + Pnic * ((σ + σack/μmem)+ (σ + σack/B))
(4)

Where Pnic is the power usage of the network interface.

b) Make a Decision:
At runtime, measure tcomp, Ninput, Noutput, and B

dynamically. By using these parameters, determine Tcpu,
Ecpu, Tcld, and Ecld.

Define βx as, βx = (Tcpu ̶ Tx)/Tcpu

Here, x is “cld” for Cloud and “cpu” for mobile CPU. βcld
is the percentage of degradation in execution time by
offloading the module to the cloud. βcpu = 0, if offloading
of the module does not takes place.

To represents the energy degradation, Calculate γx as,

 γx = (Ecpu ̶ Ex)/Ecpu

Here, x is “cld” for Cloud and “cpu” for mobile CPU. To
recognize the importance of battery usage and execution
time, State a combine cost function as,

ƒ(α, x) = α . βx + (1 ̶ α) . x (5)

where α is a user specified variable in the range [0,1]. If
α=0, battery usage is the choice to determine offload target
and if α=1, execution time is the choice to determine
offload target. To determine an offload target of the
application, obtain composite cost function ƒ (α, x) of each
possible offload target and select the one with a minimum
value as the offload target. In other words, given the user
defined α, we offload the module to target y, which is
evaluated by,

y = arg min ƒ (α, x), for x ϵ N. where N is the set of {cpu,
cld}

D. Experimental Setup

The system is built using Java framework on Windows
platform. The Eclipse is used as a development tool along
with Android SDK. Lenovo K3 Note with Android Ver.
4.2.2 used for the analysis. The system analysis is
supported out on android application.

Jaya Ashok Suradkar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1922-1927

www.ijcsit.com 1925

IV. RESULTS AND DISCUSSION

In this work we have used application for finding road
roughness and partition algorithm to analyze the
performance of CODMF. Existing system does not use
partitioning but proposed system make use of partition
algorithm to achieve more accuracy in offload decision
making.

Factor Table in Fig.3 clearly shows that how offloading
decision is takes place. Cost comparison at mobile side and
at cloud side help to get accurate offloading decision.

Fig. 3. Factor Table.

Following Fig. 4 represents comparison of execution
time at mobile side and at cloud side and Fig. 5 represents
comparison of energy consumption at mobile side and at
cloud side.

Fig. 4. Time Comparison.

Fig. 5. Power Comparison.

V. CONCLUSION

To reduce response time and save energy for mobile
devices at a time is a challenging task as unit of execution
time and power consumption are different. System
develops mechanism for profiling to evaluate the
enhancement in a performance. Proposed computation
offloading framework can attain significant improvements
in battery savings and time. Also, reduce memory
consumption at mobile side. Based on Partition algorithm
and decision accuracy of offloading framework, resource
intensive modules of application for finding road
roughness can be offloaded to the cloud. By offloading
modules to the cloud we attain maximum reduction in
execution time as well as savings in battery usage.

REFERENCES
[1] A. Rahmati and L. Zhong. Context-for-wireless: context-sensitive

energy-efficient wireless data transfer. In Proceedings of the 5th
international conference on Mobile systems, applications and
services, pages 165–178. ACM, 2007.

[2] B.-G. Chun and P. Maniatis. Dynamically partitioning applications
between weak devices and clouds. In Proceedings of the 1st ACM
Workshop on Mobile Cloud Computing & Services: Social
Networks and Beyond. ACM, 2010.

[3] M.-R. Ra, J. Paek, A. B. Sharma, R. Govindan, M. H. Krieger, and
M. J. Neely. Energy-delay tradeoffs in smartphone applications. In
Proceedings of the 8th international conference on Mobile systems,
applications, and services, pages 255–270. ACM, 2010.

[4] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud:
elastic execution between mobile device and cloud. In Proceedings
of the sixth conference on Computer systems, pages 301–314.
ACM, 2011.

[5] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang. Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading. In INFOCOM, 2012 Proceedings IEEE,
pages 945–953. IEEE, 2012.

[6] P. Shu, F. Liu, H. Jin, M. Chen, F.Wen, Y. Qu, and B. Li. “eTime:
energy-efficient transmission between cloud and mobile devices” In
INFOCOM, 2013 Proceedings IEEE, pages 195–199. IEEE, 2013.

[7] R. Beraldi, K. Massri, M. Abderrahmen, and H. Alnuweiri.
“Towards automating mobile cloud computing offloading decisions:
An experimental approach” In ICSNC 2013: The Eighth
International Conference on Systems and Networks
Communications, 2013.

[8] J. Niu, W. Song, and M. Atiquzzaman. Bandwidth-adaptive
partitioning for distributed execution optimization of mobile

Jaya Ashok Suradkar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1922-1927

www.ijcsit.com 1926

applications. Journal of Network and Computer Applications,
37:334–347, 2014.

[9] X. Lin, Y. Wang, Q. Xie, and M. Pedram. Energy and performance-
aware task scheduling in a mobile cloud computing environment. In
Cloud Computing (CLOUD), 2014 IEEE 7th International
Conference on, pages 192–199. IEEE, 2014.

[10] Ying-Dar Lin; Chu, E.T.-H.; Yuan-Cheng Lai; Ting-Jun Huang,
"Time-and-Energy-Aware Computation Offloading in Handheld
Devices to Coprocessors and Clouds," in Systems Journal, IEEE ,
vol.9, no.2, pp.393-405, June 2015.

[11] Wu, H., Seidenstücker, D., Sun, Y., Nieto, C.M., Knottenbelt, W. J.,
& Wolter, K. A Novel Offloading Partitioning Algorithm in Mobile
Cloud Computing. Unpublished, 2015.

[12] Jaya Ashok Suradkar and R D Bharati. Article: Computation
Offloading: Overview, Frameworks and Challenges. International
Journal of Computer Applications 134(6):28-31, January 2016.
Published by Foundation of Computer Science (FCS), NY, USA.

[13] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. Maui: making smartphones last longer
with code offload. In Proceedings of the 8th Int. Conf. on Mobile
systems, applications, and services, pages 49–62. ACM, 2010.

.

Jaya Ashok Suradkar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1922-1927

www.ijcsit.com 1927

